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The figures in the margin indicate _ﬁdl marks
' for the questions ‘

Answer five questions, selecting one
from each Unit

UNIT—I

A. (@) What do you mean by numerical
integration? What is the approach of
deriving numerical integration? Explain
briefly with an example. 1+3=4

(b) State and obtain Weddle’s rule of
" numerical integration by deriving
general quadrature formula. 8
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(3)

Linear combination of vectors

Linear dependence and independence of
vectors with examples

Quadratic forms and properties of a
quadratic form

UNIT—III

Define two-dimensional random
variables, two-dimensional distribution
function and marginal distribution
function. What do you mean by
‘independent random variables’? 4

Joint distribution of X and Yis given by
200
foy=4xye V) x>0, y>0

Test whether X and Y are independent.
For the above joint distribution, find the
conditional density of X given Y = Y. 7

Define expected value of a random
variable. Write its properties. 3

What is covariance? For the pn random
variables X;, X,, .-, X, , show that

noon
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UNIT—V

9. Define chi-square variate and derive ‘its
distribution.
Obtain moment-genérating function of
chi-square distribution.

variance, B, and B, from

Find mean,
cmnulant-generaﬁng function of chi-square
distribution. . 6+2+3=11

Define Student’s t-statistic and derive

"10. (a)
its probabi]ity density function. 5
(p) Define F-statistic and .mention its
properties- Establish the relationship
between F and chi-square distributions. 6
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